Map的实现原理

golang 的 map 底层是哈希表查找,平均查找效率是 O(1),最差是 O(N)

go源码

在源码中,表示 map 的结构体是 hmap,它是 hashmap 的“缩写”:

// A header for a Go map.
type hmap struct {
	count     int // 元素个数,调用 len(map) 时,直接返回此值
	flags     uint8
	B         uint8  // buckets 的对数 log_2
	noverflow uint16 // overflow 的 bucket 近似数,做扩容决策II的判断
	hash0     uint32 // hash seed

	buckets    unsafe.Pointer // 指向 buckets 数组,大小为 2^B,如果元素个数为0,就为 nil
	oldbuckets unsafe.Pointer // 指向旧桶数组的指针(用于扩容时的临时存储)
	nevacuate  uintptr        // 指示扩容进度,小于此地址的 buckets 迁移完成

	extra *mapextra // optional fields
}

mapextra 结构体包含了与哈希表相关的额外信息,其定义如下:

type mapextra struct {
    overflow     *[]*bmap // 溢出桶的指针数组
    oldoverflow  *[]*bmap // 旧溢出桶的指针数组(用于扩容)
    nextOverflow *bmap     // 下一个要分配的溢出桶
}

buckets 是一个指针,最终它指向的是一个结构体:

type bmap struct {
    topbits  [8]uint8    // 存储每个键的哈希值的高 8 位
    keys     [8]keytype  // 存储 8 个键
    values   [8]valuetype // 存储 8 个值
    pad      uintptr     // 填充字段,用于内存对齐
    overflow uintptr     // 指向下一个溢出桶的指针
}
  • topbits [8]uint8 存储每个键的哈希值的高 8 位(称为 tophash),用于快速判断某个键是否可能存在于当前桶中。如果 topbits[i] 与某个键的哈希值高 8 位匹配,则进一步检查键是否相等。
  • 键和值分开存储,以减少内存对齐带来的填充(padding),节省内存。
  • 当一个桶中的键值对数量超过 8 时,会通过 overflow 指针链接到一个新的桶,形成链表结构。

hmap.png

创建Map

从语法层面上来说,创建 map 很简单:

ageMp := make(map[string]int)
// 指定 map 长度
ageMp := make(map[string]int, 8)

// ageMp 为 nil,不能向其添加元素,会直接panic
var ageMp map[string]int

实际上底层调用的是 makemap 函数,主要做的工作就是初始化 hmap 结构体的各种字段,例如计算 B 的大小,设置哈希种子 hash0 等等。

func makemap(t *maptype, hint int64, h *hmap, bucket unsafe.Pointer) *hmap {
	// 省略各种条件检查...

	// 找到一个 B,使得 map 的装载因子在正常范围内
	B := uint8(0)
	for ; overLoadFactor(hint, B); B++ {
	}

	// 初始化 hash table
	// 如果 B 等于 0,那么 buckets 就会在赋值的时候再分配
	// 如果长度比较大,分配内存会花费长一点
	buckets := bucket
	var extra *mapextra
	if B != 0 {
		var nextOverflow *bmap
		buckets, nextOverflow = makeBucketArray(t, B)
		if nextOverflow != nil {
			extra = new(mapextra)
			extra.nextOverflow = nextOverflow
		}
	}

	// 初始化 hamp
	if h == nil {
		h = (*hmap)(newobject(t.hmap))
	}
	h.count = 0
	h.B = B
	h.extra = extra
	h.flags = 0
	h.hash0 = fastrand() // hash0 是一个随机值,用于哈希计算。每次初始化 map 时,hash0 都会不同,以防止哈希碰撞攻击。
	h.buckets = buckets
	h.oldbuckets = nil
	h.nevacuate = 0
	h.noverflow = 0

	return h
}

注意,这个函数返回的结果:*hmap,它是一个指针。

key定位

不同类型 key 根据对应的哈希函数以及 hmap.hash0 计算哈希值 hash hash 低 B 位确定桶索引 bucketIndex := hash & (1<<B - 1) hash 高 8 位找到此 key 在 bucket 中的位置,这是在寻找已有的 key。最开始桶内还没有 key,新加入的 key 会找到第一个空位,放入。

hmap_key_search.png

再说一下 minTopHash,当一个 cell 的 tophash 值小于 minTopHash 时,标志这个 cell 的迁移状态。因为这个状态值是放在 tophash 数组里,为了和正常的哈希值区分开,会给 key 计算出来的哈希值一个增量:minTopHash。这样就能区分正常的 top hash 值和表示状态的哈希值。

// 空的 cell,也是初始时 bucket 的状态
empty          = 0
// 空的 cell,表示 cell 已经被迁移到新的 bucket
evacuatedEmpty = 1
// key,value 已经搬迁完毕,但是 key 都在新 bucket 前半部分,
// 后面扩容部分会再讲到。
evacuatedX     = 2
// 同上,key 在后半部分
evacuatedY     = 3
// tophash 的最小正常值
minTopHash     = 4

Map赋值/更新

实际上插入或修改 key 的语法是一样的,只不过前者操作的 key 在 map 中不存在,而后者操作的 key 存在 map 中。

mapassign 有一个系列的函数,根据 key 类型的不同,编译器会将其优化为相应的“快速函数”。

key类型
uint32mapassign_fast32(t *maptype, h *hmap, key uint32)
uint64mapassign_fast64(t *maptype, h *hmap, key uint64)
stringmapassign_faststr(t *maptype, h *hmap, ky string)

源码大体和之前讲的类似,核心还是一个双层循环,外层遍历 bucket 和它的 overflow bucket,内层遍历整个 bucket 的各个 cell。

针对这个过程提几点重要的细节:

  • 函数首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic。
  • 我们知道扩容是渐进式的,如果 map 处在扩容的过程中,那么当 key 定位到了某个 bucket 后,需要确保这个 bucket 对应的老 bucket 完成了迁移过程。即老 bucket 里的 key 都要迁移到新的 bucket 中来(分裂到 2 个新 bucket),才能在新的 bucket 中进行插入或者更新的操作。
  • 在循环的过程中,如果在 map 没有找到 key 的存在,也就是说原来 map 中没有此 key,这意味着插入新 key。那最终 key 的安置地址就是第一次发现的“空位”(tophash 是 empty)。
  • 如果这个 bucket 的 8 个 key 都已经放置满了,那在跳出循环后,发现 inserti 和 insertk 都是空,这时候需要在 bucket 后面挂上 overflow bucket。当然,也有可能是在 overflow bucket 后面再挂上一个 overflow bucket。这就说明,太多 key hash 到了此 bucket。
  • 在正式安置 key 之前,还要检查 map 的状态,看它是否需要进行扩容。如果满足扩容的条件,就主动触发一次扩容操作。
  • 最后,会更新 map 相关的值,如果是插入新 key,map 的元素数量字段 count 值会加 1;在函数之初设置的 hashWriting 写标志flag清零。
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
	if h == nil {
		panic(plainError("assignment to entry in nil map"))
	}
	...
	if h.flags&hashWriting != 0 {
		fatal("concurrent map writes")
	}
	hash := t.Hasher(key, uintptr(h.hash0))

	// Set hashWriting after calling t.hasher, since t.hasher may panic,
	// in which case we have not actually done a write.
	h.flags ^= hashWriting

	if h.buckets == nil {
		h.buckets = newobject(t.Bucket) // newarray(t.Bucket, 1)
	}

again:
	bucket := hash & bucketMask(h.B)
	if h.growing() {
		growWork(t, h, bucket)
	}
	b := (*bmap)(add(h.buckets, bucket*uintptr(t.BucketSize)))
	top := tophash(hash)

	var inserti *uint8
	var insertk unsafe.Pointer
	var elem unsafe.Pointer
bucketloop:
	for {
		for i := uintptr(0); i < abi.OldMapBucketCount; i++ {
			if b.tophash[i] != top {
				if isEmpty(b.tophash[i]) && inserti == nil {
					inserti = &b.tophash[i]
					insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.KeySize))
					elem = add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
				}
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.KeySize))
			if t.IndirectKey() {
				k = *((*unsafe.Pointer)(k))
			}
			if !t.Key.Equal(key, k) {
				continue
			}
			// already have a mapping for key. Update it.
			if t.NeedKeyUpdate() {
				typedmemmove(t.Key, k, key)
			}
			elem = add(unsafe.Pointer(b), dataOffset+abi.OldMapBucketCount*uintptr(t.KeySize)+i*uintptr(t.ValueSize))
			goto done
		}
		ovf := b.overflow(t)
		if ovf == nil {
			break
		}
		b = ovf
	}

	// Did not find mapping for key. Allocate new cell & add entry.

	// If we hit the max load factor or we have too many overflow buckets,
	// and we're not already in the middle of growing, start growing.
	if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
		hashGrow(t, h)
		goto again // Growing the table invalidates everything, so try again
	}

	if inserti == nil {
		// The current bucket and all the overflow buckets connected to it are full, allocate a new one.
		newb := h.newoverflow(t, b)
		inserti = &newb.tophash[0]
		insertk = add(unsafe.Pointer(newb), dataOffset)
		elem = add(insertk, abi.OldMapBucketCount*uintptr(t.KeySize))
	}

	// store new key/elem at insert position
	if t.IndirectKey() {
		kmem := newobject(t.Key)
		*(*unsafe.Pointer)(insertk) = kmem
		insertk = kmem
	}
	if t.IndirectElem() {
		vmem := newobject(t.Elem)
		*(*unsafe.Pointer)(elem) = vmem
	}
	typedmemmove(t.Key, insertk, key)
	*inserti = top
	h.count++

done:
	if h.flags&hashWriting == 0 {
		fatal("concurrent map writes")
	}
	h.flags &^= hashWriting
	if t.IndirectElem() {
		elem = *((*unsafe.Pointer)(elem))
	}
	return elem
}

Map删除

删除操作同样是两层循环,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。 找到对应位置后,对 key 或者 value 进行“清零”操作:

  1. 对 key 清零
  2. 对 value 清零
  3. 将 count 值减 1,将对应位置的 tophash 值置成 Empty

Map扩容

随着向 map 中添加的 key 越来越多,key 发生碰撞的概率也越来越大。bucket 中的 8 个 cell 会被逐渐塞满,查找、插入、删除 key 的效率也会越来越低。最理想的情况是一个 bucket 只装一个 key,这样,就能达到 O(1) 的效率,但这样空间消耗太大,用空间换时间的代价太高。

因此,需要有一个指标来衡量前面描述的情况,这就是装载因子
loadFactor := count / (2^B)
count 就是 map 的元素个数,2^B 表示 bucket 数量。

扩容时机

再来说触发 map 扩容的时机:在向 map 插入(mapassign) 新 key 的时候,会进行条件检测,符合下面这 2 个条件其中之一,就会触发扩容:

  1. 装载因子超过阈值,源码里定义的阈值是 6.5。
  2. overflow 的 bucket 数量过多:当 B 小于 15,也就是 bucket 总数 2^B 小于 2^15 时,如果 overflow 的 bucket 数量超过 2^B;当 B >= 15,也就是 bucket 总数 2^B 大于等于 2^15,如果 overflow 的 bucket 数量超过 2^15。
if !h.growing() && (overLoadFactor(int64(h.count), h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
	hashGrow(t, h)
}

第 1 点:我们知道,每个 bucket 有 8 个空位,在没有溢出,且所有的桶都装满了的情况下,装载因子算出来的结果是 8。因此当装载因子超过 6.5 时,表明很多 bucket 都快要装满了,查找效率和插入效率都变低了。在这个时候进行扩容是有必要的。

扩容策略:将 B 加 1,bucket 最大数量(2^B)直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。而且,新 bucket 只是最大数量变为原来最大数量(2^B)的 2 倍(2^B * 2)

第 2 点:是对第 1 点的补充。就是说在装载因子比较小的情况下,这时候 map 的查找和插入效率也很低,而第 1 点识别不出来这种情况。表面现象就是计算装载因子的分子比较小,即 map 里元素总数少,但是 bucket 数量多(真实分配的 bucket 数量多,包括大量的 overflow bucket)。 不难想像造成这种情况的原因:不停地插入、删除元素。先插入很多元素,导致创建了很多 bucket,但是装载因子达不到第 1 点的临界值,未触发扩容来缓解这种情况。之后,删除元素降低元素总数量,再插入很多元素,导致创建很多的 overflow bucket,但就是不会触犯第 1 点的规定,你能拿我怎么办?overflow bucket 数量太多,导致 key 会很分散,查找插入效率低得吓人,因此出台第 2 点规定。这就像是一座空城,房子很多,但是住户很少,都分散了,找起人来很困难。

扩容策略:解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。

渐进式扩容

再来看一下扩容具体是怎么做的。由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”地方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2个bucket

上面说的 hashGrow() 函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork() 函数中,而调用 growWork() 函数的动作是在 mapassignmapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。

第2点的扩容策略无非就是从老的 buckets 搬迁到新的 buckets,由于 bucktes 数量不变,因此可以按序号来搬,比如原来在 0 号 bucktes,到新的地方后,仍然放在 0 号 buckets。

针对第一点的扩容策略涉及到bucket的“裂变”,需要根据低B位重新计算key落在哪个bucket上,这称为rehashmap_inter_G.png 某个 key 在搬迁前后 bucket 序号可能和原来相等,也可能是相比原来加上 2^B(原来的 B 值),取决于 hash 值 第 6 bit 位是 0 还是 1。

再明确一个问题:如果扩容后,B 增加了 1,意味着 buckets 总数是原来的 2 倍,原来 1 号的桶“裂变”到两个桶。

例如,原始 B = 2,1号 bucket 中有 2 个 key 的哈希值低 3 位分别为:010,110。由于原来 B = 2,所以低 2 位 10 决定它们落在 2 号桶,现在 B 变成 3,所以 010、110 分别落入 2、6 号桶。 map_inter_H.png

再来看下搬迁过程中的几个关键点:

  • evacuate 函数每次只完成一个 bucket 的搬迁工作,因此要遍历完此 bucket 的所有的 cell,将有值的 cell copy 到新的地方。bucket 还会链接 overflow bucket,它们同样需要搬迁。因此会有 2 层循环,外层遍历 bucket 和 overflow bucket,内层遍历 bucket 的所有 cell。
  • 源码里提到 X, Y part,其实就是我们说的如果是扩容到原来的 2 倍,桶的数量是原来的 2 倍,前一半桶被称为 X part,后一半桶被称为 Y part。一个 bucket 中的 key 可能会分裂落到 2 个桶,一个位于 X part,一个位于 Y part。所以在搬迁一个 cell 之前,需要知道这个 cell 中的 key 是落到哪个 Part。很简单,重新计算 cell 中 key 的 hash,并向前“多看”一位,决定落入哪个 Part,这个前面也说得很详细了。

有一个特殊情况是:
有一种 key,每次对它计算 hash,得到的结果都不一样。这个 key 就是 math.NaN() 的结果,它的含义是 not a number,类型是 float64。当它作为 map 的 key,在搬迁的时候,会遇到一个问题:再次计算它的哈希值和它当初插入 map 时的计算出来的哈希值不一样!
你可能想到了,这样带来的一个后果是,这个 key 是永远不会被 Get 操作获取的!当我使用 m[math.NaN()] 语句的时候,是查不出来结果的。这个 key 只有在遍历整个 map 的时候,才有机会现身。所以,可以向一个 map 插入任意数量的 math.NaN() 作为 key。
当搬迁碰到 math.NaN() 的 key 时,只通过 tophash 的最低位决定分配到 X part 还是 Y part(如果扩容后是原来 buckets 数量的 2 倍)。如果 tophash 的最低位是 0 ,分配到 X part;如果是 1 ,则分配到 Y part。

Map遍历

Q:「为什么遍历map的key是无序的?」

map 在扩容后,会发生 key 的搬迁,原来落在同一个 bucket 中的 key,搬迁后,有些 key 就要远走高飞了。这样即使遍历的过程是顺序的,在经历扩容后再次遍历后的结果也会变得错乱,和原来的顺序有很大出入。

当然,如果我就一个 hard code 的 map,我也不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。的确是这样,但是 Go 杜绝了这种做法。

甚至 Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个随机序号的 cell 开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。

假设我们有下图所示的一个 map,起始时 B = 1,有两个 bucket,后来触发了扩容(这里不要深究扩容条件,只是一个设定),B 变成 2。并且, 1 号 bucket 中的内容搬迁到了新的 bucket,1 号裂变成 1 号和 3 号;0 号 bucket 暂未搬迁。老的 bucket 挂在在 *oldbuckets 指针上面,新的 bucket 则挂在 *buckets 指针上面。

map_inter_A.png

这时,我们对此 map 进行遍历。假设经过初始化后,startBucket = 3,offset = 2。于是,遍历的起点将是 3 号 bucket 的 2 号 cell,下面这张图就是开始遍历时的状态:

map_inter_B.png

标红的表示起始位置,bucket 遍历顺序为:3 -> 0 -> 1 -> 2。

因为 3 号 bucket 对应老的 1 号 bucket,因此先检查老 1 号 bucket 是否已经被搬迁过。
判断方法就是:

func evacuated(b *bmap) bool {
h := b.tophash[0]
return h > empty && h < minTopHash
}

如果 b.tophash[0] 的值在标志值范围内,即在 (0,4) 区间里,说明已经被搬迁过了。 在本例中,老 1 号 bucket 已经被搬迁过了。所以它的 tophash[0] 值在 (0,4) 范围内,因此只用遍历新的 3 号 bucket。

依次遍历 3 号 bucket 的 cell,这时候会找到第一个非空的 key:元素 e。到这里,我们的遍历结果仅有一个元素: map_inter_C.png

由于返回的 key 不为空,继续从上次遍历到的地方往后遍历,从新 3 号 overflow bucket 中找到了元素 f 和 元素 g。 遍历结果集也因此壮大: map_inter_D.png

新 3 号 bucket 遍历完之后,回到了新 0 号 bucket。0 号 bucket 对应老的 0 号 bucket,经检查,老 0 号 bucket 并未搬迁,因此对新 0 号 bucket 的遍历就改为遍历老 0 号 bucket。那是不是把老 0 号 bucket 中的所有 key 都取出来呢?

并没有这么简单,回忆一下,老 0 号 bucket 在搬迁后将裂变成 2 个 bucket:新 0 号、新 2 号。而我们此时正在遍历的只是新 0 号 bucket(注意,遍历都是遍历的 *bucket 指针,也就是所谓的新 buckets)。所以,我们只会取出老 0 号 bucket 中那些在裂变之后,分配到新 0 号 bucket 中的那些 key。

因此,lowbits == 00 的将进入遍历结果集: map_inter_E.png

和之前的流程一样,继续遍历新 1 号 bucket,发现老 1 号 bucket 已经搬迁,只用遍历新 1 号 bucket 中现有的元素就可以了。 继续遍历新 2 号 bucket,它来自老 0 号 bucket,因此需要在老 0 号 bucket 中那些会裂变到新 2 号 bucket 中的 key,也就是 lowbit == 10 的那些 key。

这样,遍历结果集变成: map_inter_F.png 最后,继续遍历到新 3 号 bucket 时,发现所有的 bucket 都已经遍历完毕,整个迭代过程执行完毕。

Q:「可以边遍历边删除吗?」

map 并不是一个线程安全的数据结构。同时读写一个 map 是未定义的行为,如果被检测到,会直接 panic。

在查找、赋值、遍历、删除的过程中都会检测写标志,一旦发现写标志置位(等于1),则直接 panic。赋值和删除函数在检测完写标志是复位之后,先将写标志位置位,才会进行之后的操作。

上面说的是发生在多个协程同时读写同一个 map 的情况下。 如果在同一个协程内边遍历边删除,并不会检测到同时读写,理论上是可以这样做的。但是,遍历的结果就可能不会是相同的了,有可能结果遍历结果集中包含了删除的 key,也有可能不包含,这取决于删除 key 的时间:是在遍历到 key 所在的 bucket 时刻前或者后。

另外,sync.Map 是线程安全的 map,也可以使用。

其他

两种get操作

// src/runtime/hashmap.go
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer
func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool)

float类型可以作为map的key吗

A: 可以,但当用 float64 作为 key 时,Go内部会先通过Float64frombits函数将其转成 uint64 类型,再插入 key 中。
此过程可能会造成两个float64不同的值经过处理后映射到了同一个key的问题,慎用之。

func main() {
	m := make(map[float64]int)
	m[1.4] = 1
	m[2.4] = 2
	m[math.NaN()] = 3
	m[math.NaN()] = 3

	for k, v := range m {
		fmt.Printf("[%v, %d] ", k, v)
	}

	fmt.Printf("\nk: %v, v: %d\n", math.NaN(), m[math.NaN()])
	fmt.Printf("k: %v, v: %d\n", 2.400000000001, m[2.400000000001])
	fmt.Printf("k: %v, v: %d\n", 2.4000000000000000000000001, m[2.4000000000000000000000001])

	fmt.Println(math.NaN() == math.NaN())
}

OUTPUT:
[2.4, 2] [NaN, 3] [NaN, 3] [1.4, 1]
k: NaN, v: 0
k: 2.400000000001, v: 0
k: 2.4, v: 2
false

如何比较两个map

A: 使用reflect.DeepEqual函数

package main

import (
	"fmt"
	"reflect"
)

func main() {
	map1 := map[string]int{"a": 1, "b": 2}
	map2 := map[string]int{"a": 1, "b": 2}
	map3 := map[string]int{"a": 1, "b": 3}

	fmt.Println(reflect.DeepEqual(map1, map2)) // true
	fmt.Println(reflect.DeepEqual(map1, map3)) // false
}

map容量为什么是2的幂次?

  • 核心原因:位运算替代取模高效计算索引位置
  • 扩容时的重新哈希 HashMap 扩容时(如从 16→32),原有元素需要重新计算索引。当容量为 2 的幂次方时,新索引只需判断哈希值的某一位(例如扩容后第 5 位)是 0 还是 1: 若为 0,则新索引 = 原索引; 若为 1,则新索引 = 原索引 + 旧容量。 无需重新计算哈希值,效率极高。

可以对map的元素取地址吗

无法对 map 的 key 或 value 进行取址。

package main

import "fmt"

func main() {
	m := make(map[string]int)

	fmt.Println(&m["qcrao"])
}

// ./main.go:8:14: cannot take the address of m["qcrao"]

如果通过其他 hack 的方式,例如 unsafe.Pointer 等获取到了 key 或 value 的地址,也不能长期持有,因为一旦发生扩容,key 和 value 的位置就会改变,之前保存的地址也就失效了。

参考

https://golang.design/go-questions/map/principal/